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We compare four surface motion laws for sharp surfaces with their diffuse inter- 
face counterparts by means of gradient flows on corresponding energy func- 
tionals. The energy functionals can be defined to give the same dependence 
on normal direction for the energy of sharp plane surfaces as for their diffuse 
counterparts. The anisotropy of the kinetics can be incorporated into the inner 
product without affecting the energy functional. 
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1. INTRODUCTION 

This paper shows that two different types of equations describing motion 
of interfaces can be linked as gradient flows under appropriate inner 
products: on one hand the diffuse interfacial solutions to the partial 
differential equations (PDE),  known as Allen-Cahn, Cahn-Hilliard, and 
viscous Cahn-Hilliard, and on the other hand equations for the movement 
of mathematical (sharp) surfaces, such as motion by mean curvature, 
motion by the negative Laplacian of mean curvature, a consequence of 
surface diffusion, I~ and a new surface motion law involving both interface 
kinetics and surface diffusion. 12~ Various previously known pieces of these 
linkages are summarized here, new linkages are established, and anisotropy 
is introduced. 
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A formulation of a gradient flow has several ingredients: a description 
of the free energy as a functional of the state of the system, an inner 
product which describes how "far apart" two states of the system are, and 
then an association of a gradient, a vector in function space, to the first 
variation of the free energy. It will be shown that prescribed kinetic factors, 
even anisotropic ones, can be built into the inner product, so that two 
states are "further apart" if they are separated by motions that are limited 
by slower kinetics. 

Formal asymptotics have been carried out for some of the PDEs to 
link the flows to corresponding sharp interface motions, but actual con- 
vergence of solutions has been shown only in the simplest of the cases. 
Little mathematical investigation has been carried out for any of the sharp 
interface models except motion by mean curvature. Possible mathematical 
approaches to solving both sharp interface and diffuse interface formula- 
tions are discussed in ref. 2, which also contains an extensive bibliography. 

2. THE FREE E N E R G Y  F U N C T I O N A L S  

In the sharp interface models, the state of the system is described by 
a surface S, and the free energy of the system is the surface energy of S, 
assumed to be the boundary of a region which has an exterior unit normal 
ns(X) at almost every point x in S, and this surface energy is given by 

E(S) = f~ y(ns(X)) dA 
e S  

Here dA refers to integration with respect to 2-dimensional area (in a 
3-dimensional system) (precisely, Hausdorff measure off2), and y is a given 
phenomenological function of unit normal vectors, the energy per unit area 
of surface with that normal direction. We thus assume y is a given positive 
Borel-measurable function on the unit sphere, and extend it by positive 
homogeneity of degree one to a function on all vectors in R 3 by defining 
y(rn) =ry(n)  for all r~>0. 

For diffuse interfaces, the state of the system is described by an order 
parameter or a composition u, defined in a region s'2 (which might be all 
space R3), and the free energy of the system is given by a functional 

E(u) = f,,~a { �89 l"(Vu/IVul) ]2 IVul2 + F(u)} dV 

where dV denotes volume integration (i.e., integration with respect to 
Lebesgue 3-dimensional measure). Here F is a given (phenomenological) 
function on unit vectors Vu/IVu], and F is a given phenomenological func- 
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tion with two equal minima, which we take to be zero. Two examples of 
such functions with minima at +1 are F ( u ) = ( 1 - u 2 )  2 and F ( u ) =  l - u  2 
for luL ~< 1 and oo otherwise. Another family of such functions is given in 
ref. 2. If we homogeneously extend F to all vectors, F ( p ) =  Ipl F(p/IPl), the 
energy functional of the system becomes 

f {�89 + r(,,)} dV 

When u in most of space has taken on values which are close to those 
locally minimizing the integral of F [that is, values close to u~ or uh, the 
values for which F(u,,)=O=F(uh)], then the "surfaces" are the regions 
where u changes from being close to one minimizer to being close to the 
other, and e is a parameter which turns out to be related to the thickness 
of these transitional regions. We can identify eF as proportional to y(n) by 
considering a single planar "surface" in which u varies only with x, the dis- 
tance in the direction of n, so that the gradient of u is everywhere parallel 
to n, and in which the energy is minimized. In this case we have 
�89 F(u). (This follows from the fact that the integrand does 
not depend explicitly on x, leading to the existence of a first integral of the 
variational derivative with a constant of integration that is zero by our 
assumption of zero minimum values for F.) Using the substitution 
dx= {Fe/[2F(u)] m} du, this leads to the energy per unit area perpen- 

dicular to n being x/~e[~v/-Fdu ] F(n). Thus if we identify eF with y, 
up to a constant of proportionality determined by F only, diffuse and sharp 
interface models will have the same orientation dependence of surface 
energy. (See refs. 4-6 for a less general form of the same statement, and 
its use in computer simulations.) Note that if IF(Vu)12=Vu. FoVu for 
some positive-definite symmetric matrix Fo, then the surface energy is 
"ellipsoidal. ' 'o) 

A mathematical constraint which it might seem necessary to impose 
on F is that the Euler-Lagrange equation associated to the energy func- 
tional (discussed below) be elliptic. We have observed, however, that 
layered interfaces corresponding to diffuse interfaces with sharp corners can 
occur in the nonelliptic case, and in fact diffuse analogs to varifolds can 
a lso  occur .  ~2~ Thus the identification of F with the sharp interface y 
remains valid. 

3. M O T I O N  LAWS 

We consider four sharp-interface motion laws and four diffuse-inter- 
face laws; each of these decreases the total energy of the system, and the 

822/77/1-2-14 
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latter three in the sharp case are volume-preserving and in the diffuse ease 
are order-parameter-preserving.  The first sharp-interface law is mot ion by 
mean curvature,  

v(x) = K(x) ( l i )  

Its anisotropic version is mot ion  by weighted mean curvature,  

v(x) = M(ns (x ) )  Kr(X) ( l a )  

Here and throughout  this paper,  v will represent a normal  velocity defined 
at almost  all points x on a surface S, M is the mobility,  a given positive 
continuous function of normal  direction, and K~.(X) will denote the 
weighted mean curvature  of  S at x corresponding to the given surface free 
energy function y(p). For  several equivalent definitions of  ~c~, for this and 
other cases see ref. 3, in which K~. is called weighted mean curvature;  see 
also ref. 2. When y ( p ) =  [pl (the isotropic case, in which the energy is 
proport ional  to area), K~,(x) is the mean curvature  ~,'(x) of  S at x, defined 
to be tr +K2,  where El and K 2 are the principal curvatures of  S at x. 
[The  sign convention is such that  the surface of a positively oriented ball 
(with outward-point ing n) has negative mean curvature . ]  When y is an 
arbi trary C 2 convex function, Ky(x)---a~ K~ + a2K 2, where a i is the second 
partial derivative of y in the i th principal direction, evaluated at ns(x) .  
Equivalently, it is the surface divergence of the vector function 
Vy(p)lp=,s(x I. Note  that  al though My does not appear  explicitly in 
Eq. (li),  it is there as an implicit constant  1 (perhaps as a result of  rescaling 
distance or time), with units of  distanceZ/time. In general M is an aniso- 
tropic phenomenological  kinetic parameter .  

In its isotropic form the second sharp-interface law is 

t *  

v(x) = ~c(x) - [Area (S ) ]  - l  | K(y) dy 
~y ~ S  

and in its anisotropic form is 

v(x) = M(ns(X))[~c~.(x) - ~:~,.] 

where 

(2i) 

(2a) 

Ka,.=fsMK~.dA/IsMdA 
This is constrained mot ion  by mean curvature,  the constraint  being that  of 
keeping the volume enclosed by S constant.  
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The third sharp-interface law is, in the isotropic case, 

v(x) = -dsX(X)  (3i) 

H e r e / i s  denotes the surface Laplacian. This is the law derived by Mullins 
for surface diffusion. The fully anisotropic version of this law is 

v = Vs.  DVs(Kr) (3a) 

The surface diffusion coefficient D is also an anisotropic phenomenological 
parameter. Again, note that although neither D nor ), appears explicitly in 
Eq. (3i), they are there implicitly with values 1. 

The fourth sharp-interface law is a new one we proposed recently. It 
introduces attachment and detachment kinetics (though M) into the sur- 
face diffusion law, and in its isotropic form can be written as either 

v = ~Is - As  x (4i) 

o r  

v = / i s  ( 1 / i s - l )  -I x (4i') 

The anisotropic versions are 

v= M ( V s .  D V s -  M ) - I  Vs .  DVsx~. (4a) 

and 

v = ( V s .  D V  s) [ (Vs.  D V s -  M)  -I (ME).)] (4a') 

These equations reduce to the second and third cases in the limit of small 
D and M, respectively. In the isotropic case, questions concerning the 
existence of the inverse operators reduce to the elementary fact that all 
eigenvalues of the Laplacian on a compact manifold, when restricted to the 
subspace of functions of average 0, are negative, just as on the circle 
(d2 /d20-  2)u = 0, only for nonpositive 2, and only for negative 2 when the 
average of u is zero. Thus the operator /I s -  MID is invertible, at least on 
a suitable space.of functions. In the anisotropic case, given that M must be 
positive, the operator (Vs .  D V s - M )  should likewise be invertible on a 
suitable space of functions, at least under some set of assumptions on D 
and M; these hypotheses have not yet been sought. 
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For each of these four sharp-interface motion laws there are cor- 
responding diffuse interface laws. We consider the isotropic laws first. 
Corresponding to motion by mean curvature (l i), we have 

au F ' ( u )  
a t  = e du - - - e  (5i) 

which is the Landau-Ginzburg or Allen-Cahn equation. A similar equation 
that conserves the integral of u and corresponds to constrained motion by 
mean curvature (2i) is 

au F ' ( u )  - -  const 
at =edu e (6i) 

where the constant is In F'(u) dV/~ a 1 dV. In a real physical situation there 
may be a kinetic coefficient which could have a dependence on u in these 
equations. Suitably normalized it would result in replacing au/at with 
[1./o/,q(u)] au/at. This change has little effect on the results according to 
ref. 8. Corresponding to surface diffusion without attachment kinetics (3i), 
we have 

Ou ( - e  du + (7i) ~ = V .  B(u)V F'~u)) 

which is the Cahn-Hilliard equation with a u-dependent diffusional 
mobility B. Corresponding to our new law (4i), we have 

- - = J g  ( V - B V - ~ g ) - I V . B V  eAu F ) (8i) 
at 

which is the viscous Cahn-Hilliard equation derived in ref. 9 but with e = 0, 
or its equivalent form 

- - = V , B V  ( V . B V - ~ , k ' ) - '  J r  ezlu (8i') 
at 

If we introduce a potential - 0  and rewrite the equation as the system of 
equations 

u , =  - V - B V 0 ,  0--- --u,/JC+eAu--F'(u)/e 

we see that the chemical potential - 0  has in it a time derivative of u - -a  
sensitivity to what happened in the recent past. As in the sharp-interface 
case, we are guaranteed the existence of the inverse operators above. 
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One essential criterion in order that Eq. (7i) approximate surface diffu- 
sion is that B = 0 at points outside of a relatively narrow interracial band; 
one then sees that the diffusion inherent in the Cahn-Hilliard equation 
happens solely within that band. Two simple forms of B to accomplish 
this are (1) to let B = c o n s t  for [u[ < 1 and B = 0  otherwise, or (2) to let 
B = 9 (  1 - u2)/2kT for some constant 9 .  The latter is not only. simple, but 
behaves near u = 1 and u = -  1 in a way that is defensible on thermo- 
dynamic grounds. The physical factors that appear in B for dilute solutions 
show that B is a product of the diffusion coefficient and the concentration 
of the minor diffusing species; (~~ specifically B = g c / k T  when c is 
small, and B = 9 (  1 - c ) / k T  when c is near 1, where ~ is the self-diffusion 
coefficient as measured with isotopes, and T is the temperature and k is 
Boltzmann's constant. To ensure that the results be relatively insensitive to 
e, B(u) could be taken to be B(u)=f l (u ) / e  for lul < 1. This is consistent 
with experience; experimental surface diffusion coefficients have dimensions 
of m3/sec; they are usually reported as an ordinary diffusion coefficient 
(m2/sec) with an arbitrarily chosen thickness (usually l nm) factored 
out.(12) 

With anisotropic surface energy, e 2 [Vu[ 2 is replaced in the energy 
functional by e2[F(VU)] 2. This leads to Au being replaced by 
V. [F(p)VF(l ) ) ]p=v, ] ,  which we abbreviate by Aru .  This can be written 
as Zij (FiFj  + FFo. ) c32u/c3x~ c3xj, in which F~ = c3F/c3pi [(p = vu), etc. If F is not 
smooth or Ar  is not an elliptic operator, then the appropriate weak form 
of the PDE is derived from the variational (gradient) versions described 
below. As was pointed out to us by Mete Soner, dependence on Vu in F 
automatically leads to the same dependence on Vu for the mobility of the 
interfacial region. Soner's argument (in arbitrary dimensions) is reproduced 
in the appendix. A formal asymptotic analysis on the phase field equations 
in R 2 which produces the same automatic factor of ~, in the mobility [but  
which does not use a u-dependent diffusion coefficient and hence reduces to 
a (2a)-type equation],  first appeared in ref. 5. For more arbitrary kinetics 
(as pointed out in ref. 5), additional directional anisotropy has to be incor- 
porated through the diffusional mobilities B (which becomes a matrix 
rather than a scalar) and J / .  Both of these functions might have to show 
a dependence on Vu/IVul as well as u. 

It is not clear whether making these assumptions of the dependence of 
various functions on Vu/lVu[ creates insurmountable mathematical 
problems when Vu is zero, since A r,  ,A/, and B would not be defined there. 
However, in fact, the dependence of these functions on Vu should probably 
be modified near V u = 0  in any case, since near p = 0 ,  (/',(p))2 ought (for 
physical reasons) to reduce to l )  Fop for some matrix Fo. 

We obtain four anisotropic diffuse interface models: 
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OU 

Ot 

Ou 
- ~  = ocg 

Ou 
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Ou 
Ot 

(U,~u l ) (edru-F '~u) )  (5a) 

(eJrU F'(u)e ~ -~n ldV  ] (6a) 

,7a, 

or equivalently 

( [(  F,:,)]} - - = V . B V  ( V - B V - J / )  - l  o# e d r U -  (8a ' )  
• 

4. G R A D I E N T  FLOWS 

Suppose e is a differentiable function o n  R 2. Then 

8 Oe Oe 
0t e(xo + tv ) l ,=o  = vt ~ + v2 0x2 

is the rate of  change of e when x moves with velocity vector  v. We observe 
that  if �9 is the usual inner p roduc t  on R 2 so that  w. v = vt w~ + v2w2, then 
the vector  w = (ae/t3xt, ae/Ox 2) Ix = x0 satisfies v. w = (3~Or) e(xo + tv ) l ,  = o. 
Indeed w is what  we usually call the gradient  of  e, because we are 
accus tomed to the usual inner product .  Mot ion  by the gradient  w increases 
e fastest (and by - w  decreases e fastest) compared  to all o ther  vectors of  
the same length as w (Schwarz 's  inequali ty)  when length is measured in the 
usual way [Ivl = (v- v)'/=]. 

Similarly, given a functional E defined on some space of functions, one 
can define the first var ia t ion  of E as a l inear functional; given an inner 
product  on that  space of  functions, one can define the opera to r  that  acts 
on functionals that  is the gradient  of  E in that  inner p roduc t  space. The 
usual inner product  for two functions u and v on a surface S without  
bounda ry  is the L 2 inner product ,  Is uv dA. Related inner products  are of  
the form Is uv/M dA for some given posit ive function M on S. As we will 
see, such a function M allows us to incorpora te  kinetic anisotropies  into a 
gradient  formulat ion while leaving E unchanged to serve as a free energy 
Lyapunov  functional. 

Among  the many  other  inner p roduc ts  is the H -~ inner product ,  
which for two functions w and v on S, each with integral  0, is often 
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given in the symmetric  form as a product  of  two (s tandard)  gradients, 
~s V~b,,. �9 V~b,, dA. Here ~b, must  satisfy As~,, = v and similarly for q~,,,; since S 
is a surface without  boundary ,  there is a unique solution to this equation 
up to a constant  (which will not affect the inner product) ,  so we can write 
~,,=dsiV. Integrat ion by parts leads to the equivalent definitions of  
the H - I  inner product  -~sWCk,,dA and -~svqbwdA, also written as 
- J s w A s i v d A  and - j s v A s i w d A .  The last form is directly usable in 
finding a suitable gradient. Related inner products  are of  the form 
js V~~ G V~k~ dA (equivalently - J s  G v~,,, dA) for some fixed positive- 
definite-matrix-valued function G on S, where for any w (or v), ~O,, ~ satisfies 
V. G Vff,  c. = w. Again, there is a unique solution (up to constants)  so that 
one can write ~ = ( V . G V )  - I  w. 

For  functions v, w defined on some region 1-2 in R 3, one has the L 2 
inner product  Su vw dV and the related inner product  (which depends on 
o / / a n d  which in turn may  depend on the current values of the gradient of 
u) ~ w,lo# dV. To define H - l - t y p e  inner products,  one has to require 
these functions to have integral 0. When B is constant,  one obtains unique 
(up to a constant)  q/,,, satisfying AqJ,,. = w by solving the Neumann  problem 
of having the normal  derivative of r be zero on the boundary  of s For  
a u-dependent diffusional mobili ty B, whether  it is a matrix or a scalar, one 
instead solves V. B(u) Vqb,,. = w. One then has the inner product  (depending 
on the current  value of u) v. w = ~ V~b,,. B(u) V~b,. dV= - ~ ~,.v dV. 

Note that the L 2 inner product  is naturally defined on a different space 
of functions than H - ~ ,  most  noticeably in that functions in the latter space 
must have integral 0 whereas functions in the former need not. However,  
some physical applications are limited to functions with integral 0, so even 
when we use the L 2 inner product  we will be restricting the space of 
functions to the subspace of functions satisfying that  constraint  (either 
explicitly or by modifying the function E by adding a term which is a 
Lagrange multiplier times the integral of  the function). In fact, the space of 
functions on which the inner product  is naturally defined and which one 
usually uses is the complet ion in the metric induced by �9 of  the set of 
smooth  functions v (with integral 0 if necessary) with finite v ~ 

5. EQUATIONS ( 1 ) - ( 4 )  AS GRADIENT FLOWS 

For  sharp interface formulat ions with anisotropic surface energies, the 
weighted mean curvature x~, is defined, as stated in earlier papers,  12" 3) to be 
the function on the surface S such that  the first variat ion opera tor  6y acting 
on S satisfies 6~,S(v)=(d/dt)E(S,)l,=o=~s(-K~.)vdA, where {S,} is a 
family of  surfaces moving with initial velocity v. This integral is precisely in 
the form of the L 2 inner product  of  v with the function w = - K~,. Thus with 
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the L z inner product, the gradient is the function w =  -~cy. Motion by 
mean curvature with isotropic interface mobility [Eq. ( l i ) ]  is gradient flow 
for E with the L 2 inner product, and decreases energy fastest compared to 
all other velocities of the same "length" (measured in the L 2 sense). But 
motion by mean curvature does not in general conserve volume. Motion by 
the difference between mean curvature and the average mean curvature is 
a gradient flow for the same Lyapunov functional E with respect to the 
same L 2 inner product, but restricted to the subset of velocities that con- 
serve volume (i.e., have integral 0); it will in general not decrease energy as 
fast as the unconstrained gradient flow. An alternative way of viewing this 
motion is to regard it as gradient flow for a different Lyapunov functional 
that includes a Lagrange multiplier (which turns out to be the average 
mean curvature) times the volume enclosed; this has the apparent 
advantage of making the flow be an unconstrained gradient flow, but the 
disadvantage of introducing a physically less relevant energy. 

Using the same first variation operator, relating (d/dt)E(S,)I,=o to 
~s(--Kr)v dA, with the H -~ inner product, the defining condition for the 
gradient becomes -~b~,.=-x~.,  and therefore W=AsK~.. Hence surface 
motion by the Laplacian of weighted mean curvature is gradient flow for 
E in the H - J  inner product, and decreases energy fastest compared to all 
other velocities of the same "length" (measured in the H - t  sense). 

Anisotropy is introduced into the energy via the function y, and 
appears in the growth law through K~., the first variation of the surface 
energy. Anisotropy in the kinetics is introduced into the inner products, not 
into the energy. Thus the L z inner product is modified to Is uv/M dA (so 
that the gradient is MK~.) and the H -1 inner product is modified to 
~sVC,,~ (so that the gradient satisfies ~O,t~=-x~., or equivalently is 
w=V.DVKr) .  Again, by Schwarz's inequality, gradient flow has the 
property of decreasing energy fastest subject to a length constraint (length 
being measured using the appropriate inner product). 

To obtain the velocity law (4i), as a gradient flow, one would like to 
define an inner product ~ on functions w, v such that w .v  = - ~ s  ~k,,,v dA, 
where setting ~b,,.=K~. should imply w =  - [ ( l / M )  As-- ( I /D)  ] -~ ZlsX~,. 
Thus, given any w, we want to define r so that f t , ,=  
- Zls~[(1/M) A s -  ( l /D)]  v. Again, this equation can be solved uniquely 
(up to a constant which affects nothing). We compute 

Therefore the desired inner product �9 is in fact a positive linear combina- 
tion of inner products and is itself an inner product automatically. F u r t h e r -  
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more, it is the most natural possible inner product, in that it is just the 
appropriate positive linear combination of the inner products for the 
extreme cases. 

Finally, we do the same for the general anisotropic case. In order to 
have Eq. (4a) be a gradient flow, one would like to define an inner product 
�9 on functions w, v such that w . v = - ~ s  ~k,,,v dA, where ~b,,,=x r should 
imply w = - M ( V . D V - - M )  -1 V .DV , . .  Again, the resulting equation 
can be solved uniquely (up to a constant) so that for any w, ~b,v= 
- - ( V - D V )  -~ ( V . D V - M ) ( w / M ) .  [We could also equivalently use the 
other formula (4a') for the velocity, and achieve the same result.] We 
compute 

-f, ~,,.v dA = fs v(V-  D V )  - l  [ ( V -  D V  - M)(w/M)] dA 

f s '-~ f s " 
= + - v ( V  DV) - ~ w d A  

Again, the desired inner product is the most natural possible one, the sum 
of the inner products for the extreme cases. 

It should be noted that a great many growth laws that one might 
write down can also be realized as gradient flows for some inner 
product. For example, the volume-conserving, energy-decreasing flow 
v = M ( K r - K a v ) - V D V  %, is gradient flow for the inner product w . v =  
js vL - lw  dA, where L-1  is the inverse of the linear operator L defined by 
L(u) = Mu - V. DVu. 

6. EQUATIONS ( 5 ) - ( 8 )  AS GRADIENT FLOWS 

For the diffuse interfaces, we begin with the energy functionals 
described earlier, 

E(u) =fxEa 

in the isotropic case and 

F~ 2 IVul2 + F(u) ] dV 

E(u) = fxE,, { e2[ r(Vu) ]2 + r(u)} ,iV 

in the anisotropic surface free energy case. The first variation of the former 
is 

(d/ds) E(u + sv)Is=o = ~ [F ' (u )  - e2du] v dV 
J 
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(there has been an integration by parts to write it in this form). The first 
variation of the latter is 

(d/ds) E(u + sv)I,=o = J [F ' (u)  --e2Ar u] v dV 

As was shown by Fife 113"~41 (and in fact first told to us by Robert 
Kohn), the Allen-Cahn equation is gradient flow for E(u) in the L 2 inner 
product and the usual, constant-B, Cahn-Hilliard equation is gradient flow 
for E(u) in the H-~ inner product for variational functions with integral 0 
on O. The L 2 statement should be fairly clear from the first variation 
formula and the foregoing description. In order to have the gradient w of 
E be -A[F' (u)-e  2 Au] (so that Cahn-Hilliard will be gradient flow), we 
need to have F'(u)-e2Au=A-~w; since the inner product of w and v in 
the H -~ sense is ~ - v A - ' w d V ,  such a w is precisely the gradient of E 
with regard to the H -~ inner product.) To obtain Eq. (7i) or (7a), the 
Cahn-Hilliard equation with the u-dependent diffusional mobility B, one 
uses the inner product ~V~,..B(u) V~t. d V = - ~ , , v d V ,  where ~b,,= 
[V.B(u)V]  -~ w. Note that (d/dt)~udV=O is enforced automatically 
when au/Ot=V.BV[-F'(u)+e2Au], by the divergence theorem; thus 
the gradient in the H -~ inner product automatically satisfies volume 
conservation. 

All the forms of Eq. (8) are similarly gradient flow for the inner 
product 

v.w= [ V,w. B(ul dv + [ ow/  , v  
Ja Jo 

7. DISCUSSION 

We have shown that sets of sharp-interface and diffuse-interface 
motion laws can be described as gradient flows in appropriate inner 
products, and have proposed methods for introducing anisotropy into all 
of these laws. Even though the energy functionals are in quite different 
spaces, we have found that corresponding sharp-interface and diffuse-inter- 
face motion laws are linked by being gradient flows for analogous inner 
products. 

The relationship between Eqs. (li) and (5i) is well established. Not 
only has the formal asymptotics been done, but also convergence of 
solutions for (5i) to those for (li) as e approaches 0 has been shown. ItSI 

Much remains to be done for the other relationships (though very 
recent unpublished work of Elliott and Garke t~6~ begins to answer many 
of the fundamental questions). Rubenstein and Sternberg 1~7~ use formal 
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asymptotics to show that the asymptotic limit of Eq. (6i) is (2i) (though 
the fact that the second term is average mean curvature is somewhat 
obscure). They compare the behavior of some approximate solutions to 
this equation to those of the Cahn-Hilliard equation. But nothing has been 
proved about the convergence of solutions to this equation to solutions to 
the corresponding sharp-interface equation. For Eqs. (3i) and (7i) (Mullins' 
surface diffusion and Cahn-Hilliard), but not for Eqs. (4i) and (8i), recent 
results (~8) have established formal asymptotic convergence. The short-time 
existence of solutions to (3i) and (4i) has been shown with smooth initial 
data. Note that there is no maximal principle. There is no proof of con- 
vergence of solutions to either (7i) or (8i) to solutions to (3i) and (4i). 

Incorporation of kinetics is accomplished by modifying the inner 
products, leaving the free energy (Lyapunov) functionals unchanged. 
Gradient flows from such modified inner products are then always consis- 
tent with both the thermodynamic and kinetic formulations; the free energy 
always goes down fastest with the given kinetics. 

Conservation (mass or volume) laws are also automatically introduced 
in the H-~ inner product. 

The new combined inner product leads to equations that conserve 
mass or volume and in the sharp-interface case are intermediate between 
motion by curvature minus average mean curvature and minus the 
Laplacian of curvature, and in the diffuse-interface case between a mass- 
conserving Cahn-Allen and the Cahn-Hilliard equations. The isotropic 
version of the diffuse-case intermediate equation contains what has been 
called a viscous term. 

It is possible to make the anisotropy in the energy of the diffuse 
surfaces identical to that of the sharp planar interfaces by setting F propor- 
tional to y. This proportionality remains when both functions are extended 
to all vectors. But for small values of Vu, [F(Vu)] 2 should reduce to a 
tensor or matrix with the symmetry of the medium, and should always be 
convex/lO. 19) This anisotropy in general is that of an ellipsoid, but is that 
of a spheroid for tetragonal and hexagonal crystals, and a sphere for cubic 
crystals and fluids. The anisotropy of ),, while consistent with the symmetry 
of the medium, is not restricted to that of a tensor, and quite commonly 
is not convex. Thus the proportionality between F and 7 must break down 
for small gradients. For calculations of energy and motion of diffuse 
interfaces this is probably not serious, since the contribution from the 
small-gradient regions should be small. It is, however, serious in spinodal 
decomposition, where one usually has random initial data that differ little 
from a constant and have small gradients. There is a need to construct a 
f '  that is given by a matrix at small gradients and reproduces the 
anisotropy of ), at larger gradients. 
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A P P E N D I X  3 

Equation (5a), with M - -  1/e and with u denoted by u ~ to make explicit 
its dependence on e, is 

1 
eu~ = - - F ' ( u  ~) + e A r  u` 

Introduce the standing wave q" = F ' ( q ) ,  which implies q ' = [ 2 F ( q ) ]  u2. 
[q(s) is t anh (x /~s )  for F ( u ) = ( l - u 2 )  2 and is s in(x /~s)  for F = l - u  2 
when l ul ~< 1 ]. Rescale u" as 

: ' ( tx )  = e q - l ( u ' ( t ,  x ) )  

so that 

and 

u " = q  ( ~ )  

._l_q,(~)_, 
l i t - -  C - t  

Now 

VF(Vu ~) = VF{Vz ") 

[because V F ( p )  = V F ( p / I P l )  for all p :/: 0]. So 

1 - ~  1 
A r U ~ = ~ q ' ( % ) A r z ~ + ~ _ q " ( ~ ) [ V F ( V : ~ ) ' V = ~ ) ]  2 

Therefore (5a) implies 

qlt 
:i-/~,-_-~ +---~ [ IV.r'(vz ") �9 Vz')l 2 -  1] = 0  

e q  

Formally, in the limit as z ~  z, IVF(Vz') �9 VL'~)I 2 goes to 1, which says that 
z is the signed distance to the interface in some metric that is related to F, 
and {z = 0} is the limit interface, with normal velocity equal to z,/IV=l and 
weighted mean curvature K~. = [ 1 /F(Vz) ]  drZ .  So z " , -  A r z ` =  0 implies that 
the normal velocity v is given by 

-, 1 
v . . . .  F(Vz)~%. = F(n)K  r 

IV=l IV=l 

s Due  to Mete  Stoner.  
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